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ABSTRACT 

Coordinates &v, 6’ are introduced, one of which is the internuclear distance, and 
all of which are linear combinations of interparticle distances in a molecular three-body 
system. Each matrix element of the Hamiltonian or unity is shown to be the sum of a 
few products of reduced matrix elements, which are one- or two-dimensional integrals, 
provided that each basis function is the product of a function of 5 and 7 times a function 
of 6’. For basis functions which are products of mononomials times exponentials in 
& ~,8, the reduced matrix elements are represented as linear combinations of basic 
integrals, for which closed-form or recursive expressions are derived. 

I. INTRODUCTION AND SUMMARY 

The Hylleraas type of trial function for a three-body S-state [I] is an exponential 
times a polynomial in the interparticle distances (or linear combinations thereof). 
As the number of terms in the polynomial is increased, the convergence of the 
minimum Rayleigh quotient to the ground-state energy is quite rapid for helium- 
like systems, as was shown by Pekeris [2]. For muonic molecules the corresponding 
convergence rate has been found to be much slower ([3], [4]) than for helium. 

Some improvement can be made by using a trial function which is the product 
of a Hylleraas function, or a sum of Hylleraas functions, times a Gaussian function 
of the internuclear distance. Frijman and Kinsey [5] have multiplied a Gaussian 
by a restricted form of Hylleraas function. Fltigge and SchrGder [6] have used sums 
of exponentials times a Gaussian. Wessel and Phillipson [7] have multiplied a 
Gaussian by a sum of products of polynomials times exponentials. The calculations 
show a marked improvement, compared to Hylleraas-type calculations, when the 
number of terms in the trial function is small. But it remains an open question 
whether the Gaussian dependence remains useful when the number of terms 
increases beyond about 100. 

1 Work performed under the auspices of the US. Atomic Energy Commission. 
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In view of the situation outlined above, it seems to this writ 
are needed for the numerical treatment of muonic molecules. 
use the Hylleraas basis (perhaps multiplied by a Gaussian) 
which is not completely general for the polynomial coefficie 
calculation of this sort, the results of which will be report 
paper. IIere we point out that any such scheme st involve more basis f~~~t~~~~ 
than are needed in the straightforward Rayleigh tz method, in order to achieve 
a given level of accuracy. The problem of compu and storing the matrix e~~rn~~t§ 
becomes acute when their number exceeds the tens of thousands of words of core 
memory in a typical large computer. We have solved this probl 
in which each matrix element separates into a sum of a few 

we call reduced matrix elements. These quantiti can be ~~rn~~ted and 
stored quickly as a preliminary step. One can then co 
more quickly (by using the reduced matrix elements) 

Section II of this paper contains expressions for matrix elements o 
basis functions, in terms of the interparticle distances as coordinates. In 
we transform to a new set of coordinates, 5,~~ 9, and restrict the basis 
be products of functions oft and 71 times functions of 8 is restriction is necessary 
for the matrix elements to separate in the desired man but the trial function is 
still general enough to include the Hylleraas form as a special case. The ~~~~~~~as~ 
times-Gaussian trial function would be another special case. 

n Section IV the matrix elements of the ~arnilt~~ia~ and unity are re 
as sums of products of reduced matrix elements. Each reduced matrix el 
definite integral over one or two variables. The latter part of Section IV is devote 
to the evaluation of these integrals, in the case that the sis f~~~t~~~s are mono- 
nomials times exponentials in 5, 7, 0. This case inclu 
trial function, but also allows for variation of the exponents, (In other words, the 
complete trial function could be a sum of functions of the Hylleraas type.) The 
reduced matrix elements are finally expressed in Section IV as linear ~ornb~~at~~~s 
of certain basic integrals, the evaluation of which is discussed in App 
Closed-form expressions are found for some of the ba 
find recursion relations, following Sack, Roothaan, an 

II. S-STATE MATRIX ELEMENT$ 

UNITS AND NOTATION 

We use units such that 6 and the absolute electronic charge are unity. ass 
unit is Ytimes the electron mass, where Yis an arbitrary scale factor. A ~a~i~~~~r 
choice of Ywould fix the unit of energy to be ghartrees (one hartree ~2321 eV), 
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and would fix the unit of distance to be I/ Y Bohr radii. The various systems of 
units (atomic, muonic, reduced muonic) which have appeared in the literature on 
muonic molecules correspond to different values of % 

Let mi , qi be the mass and charge of particle i(i = 1,2, 3). The distance from 
particle i to particle j is denoted by pk , where i, j, k are any permutation of 1,2, 3. 
The coordinates pi are shown in Fig. 1. For muonic molecules we always choose 
particle 3 to be the muon, so that p3 is the internuclear distance. 

FIG. 1. Interparticle distances pi as coordinates for S-states of three particles. 

MATRIX ELEMENTS OF HAMILTONIAN AND UNITY 

The spinless, nonrelativistic Hamiltonian for the three-particle system is 

H = 5 E-WV? + Qilpil, 
i=l 

where Vi is the gradient with respect to the position of particle i, and where 

wi = 1/(2mJ, (2.1) 

Qi = qac (i, j, k cyclic). (2.2) 

Matrix elements of H and unity are of the form 

(g I g’> = 8r2U, 
<g I H I g’> = 8n2(T + V, 

(2.3) 

which agrees with our previous form [9] except for trivial differences in notation.2 

2 The u, v of Ref. [9] correspond to g, g’ here, and the r 1 , r2 , 1z r of Ref. [9] correspond to 
pz , p1 , p3 , respectively. The factor 8~~ is not removed from U, V, Tin Ref. [9] as it is in Eq. (2.3) 
above. 
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The terms T and V come from the kinetic and potential parts of H, res~e~t~v~~y~ 
From Reference [9] and taking into account the differences in ~otat~o~~ we obtai 
expressions for U, V and T. For U we obtain 

For V we obtain 

(2.4) 

(2.5) 

where Qi is given by (2.2), and 

Vi = j gg’pac 6, 4, dps (i, j, k cyclic). (2%) 

The expression for T involves derivatives of g, g’ with respect to the ~oo~di~at~s~ 
We denote logarithmic derivatives of g and g’ by subscripts as follows: 

We further define 

Qi = Wf + WI, (i, j, k cyclic). 

The expression for Tis given by the following equations: 

GW 

T = T(1) + T(2) 3 

T(l) = i &'J>), 
i=l 

T@ = t wiTp), 
i=l 

(2.42) 

III. GOORDINATE TRAN~FOR~L~TION 

The formulas of the preceding section have a certain symmetry whit 
from Fig. (1). If two particles i, j are interchanged, then so are the ~~Qr~i~at~s 



58 CARTER 

pi , pi and the various components of Tand V. In this section we break the symmetry 
by introducing new coordinates E, 7, 0 defined as follows: 

E = HXl + x2> = BP39 

7 = HXl - x2) = 8Pz - PA (3.1) 

e = x3 = i(pl + pz - p3). 

Equations (3.1) also indicate the dependence of the new coordinates on a set of 
perimetric coordinates x, , x2 , xQ which run independently from 0 to co. All 
matrix elements are ultimately expressed as multiple integrals over x1 , x2, X, . 

At this point an explanation is in order as to why E,T, 0 were chosen as indicated. 
First of all, the separability mentioned in Section I is a consequence of the fact 
that E and 77 depend only on x1 and x2, while 8 depends only on x3. Second, the 
reason why one of the new coordinates has been chosen proportional to p3 is that 
p3 (the internuclear distance) plays a special role in muonic molecules. The wave 
function varies more rapidly in p3 than in p1 and pz , and the trial function needs to 
be more flexible in ps than in the other coordinates. The greater flexibility can be 
accomplished by including higher powers of p3 , than of p1 or pz , in the polynomial 
part(s) of the trial function. To do this we need one of the new coordinates, in 
terms of which the polynomial is expanded, to be a multiple of p3 . 

The only nontrivial change we could make in Eqs. (3.1) without losing one of the 
desirable properties mentioned above, would be to add a multiple of < to 7. But 
this would destroy what is left of the symmetry: 6 and 6’ are even, and 7 is odd, under 
interchange of 1 and 2. This is a third desirable property of the coordinates when 
the two nuclei are identical, since then one can delete odd terms in 7 from the trial 
function. 

By solving (3.1) for the old coordinates pi , we obtain the inverse relations: 

p1 = x2 + x3 = e + E - q, 

p2 = x1+ x3 = B + t + v, (3.2) 
p3 = Xl + x2 = 2.$. 

The Jacobian of the transformation from pi to xi is 2: 

dpl dp2 dp, = 2 dx, dx, dx, = 2 d%. (3.3) 

Equations (2.4), (2.6), (2.12) and (2.13) can be written as 

U = j gg’u d3x, 

Vi = j gg’vi d3x, 

Ti”“’ = $ gg’ti(“) d3x, 

(3.4) 



S-STATE MATRIX ELEMENTS 59 

where the U, vi , and tin) are functions of the coordinates. In ea 
in a factor of 2. Comparing (3.4) with the equations of Section 

zf = 2PlP,P, > 

vi = 2Pjpk 2 

t(l) = %iglPlPzP, I: 7 

t!2) = (p.” + Pke 
z 2 - Pi23 f%f&dc + &&:,I. 

S~bst~tut~~g (3.2) into (3.5), we obtain 

u = (45)@ f (8p)e + 4&f” - 718)~ 

Substitution of (3.2) into (3.6) yields 

2'1 = (400 + 4E(( + 77), 

vz = (4EY + 4‘% - T>, 
213 = 282 + 458 + 2((2 - 7”). 

Defining 

v = i Q<Vi ) 
i=l 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.1 a> 

and using (2.5) and (3.4), we obtain 

V = / gg’v d”x. 

Substitution of (3.10) into (3.11) yields 

v = 2QP + 4(Q, + Q, -k QW’ + [4(Q1+ QJ + 2QslE” t 4( 

Equation (3.13) is perfectly general, but most cases of physical interest have charges 

41 = q2 = zkl, q3 = Fz, (3.14) 

for some positive integer z. For instance H %+, H-, ppp, ppd, etc., alI ~or~es~~~d to 
z = 1, while He, Li+ ,..., correspond to z = 2, 3,... . Substituting (3.14) into (X2), 
we obtain 

Q, = Q2 = -2, (3.15) 
which simplifies (3.13): 

V = 28’ + 4(i - 2Z)@ - 8@ + 2(f2 - T2)e 

We use (3.16) for convenience in Section IV. Should anyone wish to s 
not satisfying (3.14), the necessary modification of replacing (3.16 
straightforward. 
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To transform the logarithmic derivatives in (3.7) and (3.8) we restrict the basis 
functions to be products of the form 

g = d(!f, 4 4e>, 

g’ = CL r> e’(@, 
(3.17) 

and denote logarithmic derivatives with respect to the new coordinates as follows: 

d z-i?!! d =!ad 1 ae 
E dag’ R da7 ee=;gj, 

and similarly for the primed quantities. (The partial differentiation symbol is used 
for the ordinary derivative of e above, to avoid confusion with the function d.) 
From (2.7), (3.1), and (3.17) we obtain the transformation of logarithmic 
derivatives: 

gl = Hee - 4, g2 = S(ee + 4, g3 = 4th - 4, (3.19) 
g; = &(eL - d,!J, d = i&i + 4, gi = &(d; - e;). 

The next steps are to substitute (3.19) into (3.7) and (3.Q and collect terms in the 
function 

t = t (L&p + witi’““). 
i=l 

The algebra is lengthy but elementary. The result is in the form 

t = (~~02 + p5e) eeei + (~8~ + $9 e, + (p8e2 + P,e) 4 + cd32 + be + 4, 
(3.21) 

where the coefficients pi , a, b, c are functions of 5 and q. In terms of the constants 

w = Wl + w2 , h = w1 - w2 , (3.22) 

the coefficients are as follows: 

~4 = (2~ + 4~3) t - 2hrl, 

~5 = (2~ + 8~3) 8" + 2~77~ - 4hs%, 

~6 = &f - wrl) d; + Vq - ~$1 d; , 

~7 = Ch(P + $> - 2~55714 + PhEq - NE” + $Nd;, 
ps = @5 - wrl) d, + @v - w!> d$ , 

(3.23) 

pg = L&t” + 7”) - 2~511 4 + W&I - NE” + ~“11 4, 
a = w&&d; + 44;) + w&&d,: + dnd;), 
b = 2wt2(d,d; + d,d;) + Pwc51 + h(t2 - ~2>l@~d; + d,d;), 
c = t(t2 - r12)[wd& + (w + 4~3) d,d; + h(d,d; + 441. 
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IV. REDUCED MATRIX ELEMENTS 

In this section we derive reduced matrix elements Ri s P,: ) Si such that the matrix 
elements (2.3) separate into sums of products as follows: 

U = 5 R,S,, T + v = f P& * 
i=l i="l 

First we define nine functions si(6) as follows: 

s1 = e2, sg = 02eseL , s7 = Be, ) 

s2 = 8, s5 = Oeeei , s, = t12ei, 

s3= 1, so = 02e, , so = Be’, ~ 

ext we define some more functions ri(& 7) an pi@, 7) as follows: 

f-1 = 4E, Y2 = sp, r3 = 4K5" - q2)9 

p1 = 2 + a, p2 = (1 - 22145 + 3, p3 = a@2 - q?") - 8zp 

From (3.9), (4.2), and (4.3) we obtain 

3 

u = c Y& . 
i-1 

From (3.16), (3.21), (4.2) and (4.4) we obtain 

t + v = i p& * 
i=l 

$- e. 
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Substituting (3.17) and (4.5) into the first of Eqs. (3.4) we obtain 

’ 
U = i i de d’e’risi d3x. 

id 

The first of Eqs. (4.1) follows directly from the above expression, (4.7), and (4.9). 
To prove the second of Eqs. (4.1) we need 

T = gg’t d3x, 
i 

(4.10) 

which follows from (2.9), (2.10), (2.11), (3.20), and the last of Eqs. (3.4). From 
(3.12), (3.17), (4.6), and (4.10), we obtain 

T f V = t s de d’e’pisi d3x. 
i=l 

The second of Eqs. (4.1) then follows from (4.8) and (4.9). 

HYLLERAAS BASIS 

Now we specialize the basis functions as follows: 

d = 8$meAE+Bv, e = 8”ecB, 
(4.11) 

d' = &,deA'E+B'n, e' = p'ecf@* 

These functions are slightly more general than those of References 2, 3, and 4, in 
that the exponents are not assumed to be the same for all elements of the basis. 
From (3.18) and (4.11) we have 

dc = I.?-’ + A, d; = Z’c-” + A’, 

d, = my-l -/- B, d; = m;l” + B’, (4.12) 

e, = nkl + C, e; = n’tl-l + c’. 

The combinations of derivatives which appear in the expressions (3.23) for a, b, c 
are 

d,d; = Xl<-2 + X&l + X3, 

d,d; = Yl~-2 + Y,,-l + Y, , 

d,d; + d,d; = Df-ly-l + Et-l + FT-l + G, 

(4.13) 



P3 = %” - q21 - 8zC2 + [wW15-” + x2 + -J&f) 

+ (w + 4w3)(yIt7-2 + Y&7-1 + Y3E) 
+ WW + E + Ff7-l + GOI@ - y2J 

or p6, p7, ps , and p9, we rewrite (3.23) as 

ps = &d; + /‘?d; , 

where 
pg = $4, + s”d, , 

(jJ. = hf - w7, 

p” = h7 - w.$, 

f = h(f2 + q2) - w(257), 

8 = h(2f7) - w(p + 72). 
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where the coefficients, from (4.12), are 

x1 = II’, X2 = Al’ + A’I, X3 = AA’, 
Y, = mm’, Y, = Bm’ + B’m, 

D = lm’ + E’m, 
F = Am’ j- A’m, 

From (3.23), (4.4), and (4.13) we obtain 

PI = 2 + WK.& + F) + (X, + D>k” 
+ (x3 + Y3)t + E7kl i- Y&7-1 + Gq i Y~&-*]y 

P, = 41 - W@ + 2~4x1 + X,f + X3t2 + Y,E"7-" + 9r2&--1 -I- X2(=) 

From (4.12) and (4.17) we obtain 

p6 = (m’7-1 + B’) Z + (E’t-1 + A’) 8, 

p7 = (m’7-’ + B’) li; + (I’&-l + A’) 8, 

p8 = @q-l + @ B f (Zi? + A) /% 

pg = (m7-1 + B) p + (Q? + A) 8. 

(4.15) 

(4.ri6) 

(4.17) 

(4.F8) 

(4.19) 
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From (4.2) and (4.12) we obtain 

s4 = nn’ + (02’ + en) 8 + CC’@, 

sg = nn’kl + (Cn’ + C’n) + CC’O, 

sg = i-20 + co2, s, = n + C0, 

s8 = n’B + C’B2, sg = n’ + C’B. 

(4.20) 

The next step is to evaluate (4.7), (4-S), and (4.9). For this purpose it is convenient 
to define basic integrals as follows: 

I& M) = /j &I” expU + 4 5 + @ + B’) ~1 dx, d-~, 

JCL, M> = j-1 (P - r”> &I” exp[(A + A’) f + (B + B’) ~1 dx, dx, , (4.21) 

K(N) = 119~ exp[(C + C’) 81 dx, . 

The problem of evaluating these quantities is considered in Appendix A. In the 
remainder of this section, we reduce the quantities Ri , Pi , and Si to linear combina- 
tions of the quantities 1, J, K. 

From (4.2), (4.9), (4.1 I), and (4.21), we obtain 

S, = KtN + 3, S, = KW + 11, & = K(N), 
where N = n + n’. Similarly from (4.9), (4.1 l), (4.20), and (4.21), we obtain 

S, = nn’K(N) + (Cn’ + C’n) K(N + 1) + CC’K(N + 2), 
S, = nn’K(N - 1) + (Cn’ + C’n) K(N) + CC’K(N + l), 
Se = nK(N + 1) + CK(N + 2), S, = nK(N) + CK(N + l), 
S, = n’K(N + 1) + C’K(N + 2), S, = n’K(N) + C’K(N + 1). 

From (4.3), (4.7), (4.11), and (4.21), we obtain 

R, = 41(L + 1, M), R, = U(L + 2, Al), R, = 4J(L + 1, M), 

where L = I + I’ and M = m + m’. Similarly from (4.14), (4.15), (4.16), (4.8), 
(4.11), and (4.21), we obtain 

PI = [2 + w(& + F)] I(L, M) + w[(X, + 0) I(L - 1, M) 
+(x,-t Y&w+ l,M)f-fw-- 1,Mf 1) 
+ Y&L + 1, A4 - 1) + GI(L, M + 1) + Y,I(L + 1, A4 - 2)1, 

Pz = 2&Y, + 0) I& M) + [4(1 - 22) + 2w(X, + F)] I(L + 1, M) 
+ 2w[(X, + Y,) I(L + 2, M) + YlI(L + 2, M - 2) + Y&L + 2, A4 - 1) 
+ EI(L, A4 + 1) + GI(L + 1, A4 + l)] + h[DJ(L - 1, M - 1) 
+ EJ(L - 1, M) + FJ(L, A4 - 1) + GJ(L, M)], 



- 2J(L, M) - SzI(L + 2, iv) + (WX, + hE) J(L, M) 3- 

+ iwX3 + (w + 4w3W3 + hG1 JCL + 1, 
+ (w $ 4w,)[YlJ(L + 1, M - 2) + 

+ h[DJ(L, M - 1) + t;J(L + 1, M - l)]. 

From (3.23) etc., we obtain 

P4 = (2w + 4w,) I(L + 1, A4) - 2hI(L, M + l)? 

P5 = (2w + 8w,) I(L + 2, M) + 2wI(L, M + 2) - 4hI(L + 1, 

For the remaining Pi we define 

and similarly for fi, y, and 6. From (4.18) we have 

a(L, M) = hI(L + 1, M) - Wl(L, M + 1), 

/XL, iM> = hW, M + 1) - wI(L + 1, M), 

y(L, M) = h[I(L + 2, M) + I(L, M + 2)] - 2wI(L + 1, 

S(L, M) = 2hI(L + 1, A4 + 1) - w[P(L $ 2, M) + d(L, M + 2)). 

From (4.19) etc., we obtain 

I=, = m’a(L, M - 1) + B’a(L, M) $ I’/?(L - I, 

- m’y(L, M - 1) + B’y(L, M) + 1’6(L - 1, M) + A’@, MS, 

l ma@, h4 - 1) + Ba(L, M) + @(L - B, M) + A/3(L, 

P9 = my(L, M - 1) + By(L, M) + l&L - 1, 

APPENDIX A 

In this appendix we consider the problem of evaluating the basic integrals & J, 
of Section IV. From (4.21) we see that the K’s are trivially related to the 
definition of the gamma function, and that the J’s are simple differences be 
the I’s. The only serious problem is to find an efficient method for ~a~~~~ati~ 
numbers of integrals of the form 

I(L, M) = jj .pT”e-at-bn dx, dx, , (A-i) 

581/4/I-5 
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where we have set a = -A - A’ and b =’ TB L B’ for brevity. 
Of course one can use (3.1) to eliminate &J and r), and then use the binomial 

theorem to represent (A-l) as a double sum of one-dimensional integrals. But the 
formal summations are needlessly time-consuming and can lead to excessive 
roundoff errors. A more satisfactory procedure, is to evaluate (A-l) recursively. 
Using (3.1), we find that (A-l) reduces to 

W, M> = (--W t--f&$? P/(aa - W, (A-2) 

which is aspecial case of the problem considered by Sack, Roothaan, and Kolos 
[8]. One could apply their method directly to (A-2), but the resulting recursion 
relation would involve cancellations, with the danger of excussive roundoff errors. 
A safer way is to split (A-2) into two parts, as follows: 

i(L, M) = T&a, b) + (-QM r&a, --b), 
P&a, b) = (-a# (--&JM [2a’V(a + b)]. 

(A-3) 

From Ref. [8] we obtain the following recursion relation, the terms of which are 
all of the same sign: 

(a + b)I’& = Lr L-l,~ + M~L.M-~ + (-W (-hJM (2/a>. 

A further simplification is possible in the special case that b = 0. This case 
arises from a trial function of the Hylleraas type, when the exponential is symmetric 
in p1 and pz . In this case, the second of Eqs. (A-3) can be evaluated in closed form, 
as follows: 

II&a, 0) = [2(M + L + l)!j/[(M + 1) LP+~+~]. 
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